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Abstract. The document reviews the main properties of the natural num-

bers, including well-ordering and induction.

1. The Well-Ordering Principle

The set of natural numbers is N = {0, 1, 2, 3, . . . }, as characterized by the five
Peano axioms. These use the idea of successor: the successor of n is n + 1.

Axiom 1. (Peano’s Axioms) The set N of natural numbers satisfies

(N1) 1 belongs to N
(N2) If n belongs to N, then its successor belongs to N
(N3) 1 is not the successor of any element in N
(N4) If n and m in N have the same successor, then n = m
(N5) A subset of N which contains 1, and which contains the successor of each

of its elements, must equal N.

The main axiom here is (N1), which we may call the induction axiom. We
restate this as

Proposition 1. (Peano’s Rule)
Let S ⊂ N. If

(a) 1 ∈ S, and
(b) n ∈ S ⇒ n + 1 ∈ S,

then S = N.

Proposition 2. (Well-Ordering Principle)
Let X ⊂ N be nonempty. Then there exists a ∈ X such that a ≤ x for every x ∈ X.

Proof. Let X ⊂ N and assume that X has no smallest element; we show that
X = ∅. Let

S = {n ∈ N | n < x for every x ∈ X}.
Clearly S ∩X = ∅; if we show that S = N, then X = ∅.

Since 1 is less than or equal to every natural number, 1 is less than or equal to
every natural number in X. Since X has no smallest element, 1 /∈ X, so 1 < x for
every x ∈ X. Thus 1 ∈ S.

Suppose that n ∈ S. Then n < x for every x ∈ X, so n+ 1 ≤ x for every x ∈ X.
If n + 1 were in X, it would be the smallest element of X; since X has no smallest
element, n + 1 /∈ X; thus n + 1 6= x for every x ∈ X, whence n + 1 < x for every
x ∈ X. It follows that n + 1 ∈ S, and by Peano’s Rule, S = N. �
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2. The Induction Principles

Proposition 3. (Induction Principle)
Let {pi | i ∈ N} be a set of propositions indexed by N. Suppose that

(I1) p1 is true;
(I2) pn−1 implies pn, for n > 1.

Then pi is true for all i ∈ N.

Proof. Suppose not, and let n ∈ N be the smallest natural number such that pn is
false. Then n 6= 1, since p1 is true by (I1), so n − 1 exists as a natural number.
Since n− 1 < n, pn−1 is true. By (I2), pn−1 ⇒ pn, so pn is true, contradicting the
assumption. Thus pi is true for all i ∈ N. �

We call (I1) the base case and (I2) the inductive step. We note that by shifting,
we can actually start the induction at any integer. Here is an example demonstrat-
ing proof by induction.

Example 1. Show that 11n − 4n is a multiple of 7 for all n ∈ N.

Proof. A natural number a is a multiple of 7 if and only if a = 7b for some natural
number b. We proceed by induction on n. First we verify the base case, when n = 1,
and then demonstrate the induction step, wherein we show that if the proposition
is true for n− 1, then it is true for n.

(I1) Let n = 1. Then 111 − 41 = 7 = 7 · 1, which is a multiple of 7, so 11n − 4n

is a multiple of 7 in this case. This verifies the base case.
(I2) Let n > 1, and assume that 11n−1 − 4n−1 is a multiple of 7. Then 11n−1 −

4n−1 = 7k for some k ∈ N. Now compute

11n − 4n = 11n − 11 · 4n−1 + 11 · 4n−1 − 4n

= 11(11n−1 − 4n−1) + 4n−1(11− 4)

= 11 · 7k + 4n−1 · 7
= 7(11k + 4n−1),

which is a multiple of seven.
Thus properties (I1) and (I2) hold, so the proposition is true for all n ∈ N. �

Proposition 4. (Strong Induction Principle)
Let {pi | i ∈ N} be a set of propositions indexed by N. Suppose that

(IS) if pi is true for all i < n, then pn is true.

Then pi is true for all i ∈ N.

Proof. Suppose not, and let m be the smallest natural number such that pm is false.
Then pi is true for all i < m. By (IS), pm is true, contradicting the assumption.
Thus pi is true for all i ∈ N. �

It is common in the statement of the strong induction principle to include the
base case (I1), that p1 is true, as a premise. In practice, we may have to verify
(I1) as a step in demonstrating (IS). We note that (I1) is implied by (IS), but
that (I2) is not implied by (IS) (why?).
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