REAL ANALYSIS WITH TOPOLOGY TOPIC II - NATURAL NUMBERS

PAUL L. BAILEY

ABSTRACT. The document reviews the main properties of the natural numbers, including well-ordering and induction.

1. The Well-Ordering Principle

The set of *natural numbers* is $\mathbb{N} = \{0, 1, 2, 3, ...\}$, as characterized by the five *Peano axioms*. These use the idea of *successor*: the successor of n is n + 1.

Axiom 1. (Peano's Axioms) The set \mathbb{N} of natural numbers satisfies

- (N1) 1 belongs to \mathbb{N}
- **(N2)** If n belongs to \mathbb{N} , then its successor belongs to \mathbb{N}
- (N3) 1 is not the successor of any element in \mathbb{N}
- **(N4)** If n and m in \mathbb{N} have the same successor, then n = m
- (N5) A subset of N which contains 1, and which contains the successor of each of its elements, must equal N.

The main axiom here is (N1), which we may call the *induction axiom*. We restate this as

Proposition 1. (Peano's Rule)

Let $S \subset \mathbb{N}$. If (a) $1 \in S$, and (b) $n \in S \Rightarrow n+1 \in S$, then $S = \mathbb{N}$.

Proposition 2. (Well-Ordering Principle)

Let $X \subset \mathbb{N}$ be nonempty. Then there exists $a \in X$ such that $a \leq x$ for every $x \in X$.

Proof. Let $X \subset \mathbb{N}$ and assume that X has no smallest element; we show that $X = \emptyset$. Let

$$S = \{ n \in \mathbb{N} \mid n < x \text{ for every } x \in X \}.$$

Clearly $S \cap X = \emptyset$; if we show that $S = \mathbb{N}$, then $X = \emptyset$.

Since 1 is less than or equal to every natural number, 1 is less than or equal to every natural number in X. Since X has no smallest element, $1 \notin X$, so 1 < x for every $x \in X$. Thus $1 \in S$.

Suppose that $n \in S$. Then n < x for every $x \in X$, so $n+1 \leq x$ for every $x \in X$. If n+1 were in X, it would be the smallest element of X; since X has no smallest element, $n+1 \notin X$; thus $n+1 \neq x$ for every $x \in X$, whence n+1 < x for every $x \in X$. It follows that $n+1 \in S$, and by Peano's Rule, $S = \mathbb{N}$.

Date: August 9, 2018.

2. The Induction Principles

Proposition 3. (Induction Principle)

Let $\{p_i \mid i \in \mathbb{N}\}$ be a set of propositions indexed by \mathbb{N} . Suppose that

(I1) p_1 is true;

(I2) p_{n-1} implies p_n , for n > 1.

Then p_i is true for all $i \in \mathbb{N}$.

Proof. Suppose not, and let $n \in \mathbb{N}$ be the smallest natural number such that p_n is false. Then $n \neq 1$, since p_1 is true by **(I1)**, so n - 1 exists as a natural number. Since n - 1 < n, p_{n-1} is true. By **(I2)**, $p_{n-1} \Rightarrow p_n$, so p_n is true, contradicting the assumption. Thus p_i is true for all $i \in \mathbb{N}$.

We call (I1) the *base case* and (I2) the *inductive step*. We note that by shifting, we can actually start the induction at any integer. Here is an example demonstrating proof by induction.

Example 1. Show that $11^n - 4^n$ is a multiple of 7 for all $n \in \mathbb{N}$.

Proof. A natural number a is a multiple of 7 if and only if a = 7b for some natural number b. We proceed by induction on n. First we verify the base case, when n = 1, and then demonstrate the induction step, wherein we show that if the proposition is true for n - 1, then it is true for n.

(I1) Let n = 1. Then $11^1 - 4^1 = 7 = 7 \cdot 1$, which is a multiple of 7, so $11^n - 4^n$ is a multiple of 7 in this case. This verifies the base case.

(I2) Let n > 1, and assume that $11^{n-1} - 4^{n-1}$ is a multiple of 7. Then $11^{n-1} - 4^{n-1} = 7k$ for some $k \in \mathbb{N}$. Now compute

$$11^{n} - 4^{n} = 11^{n} - 11 \cdot 4^{n-1} + 11 \cdot 4^{n-1} - 4^{n}$$

= 11(11ⁿ⁻¹ - 4ⁿ⁻¹) + 4ⁿ⁻¹(11 - 4)
= 11 \cdot 7k + 4^{n-1} \cdot 7
= 7(11k + 4^{n-1}),

which is a multiple of seven.

Thus properties (I1) and (I2) hold, so the proposition is true for all $n \in \mathbb{N}$.

Proposition 4. (Strong Induction Principle)

Let $\{p_i \mid i \in \mathbb{N}\}$ be a set of propositions indexed by \mathbb{N} . Suppose that

(IS) if p_i is true for all i < n, then p_n is true.

Then p_i is true for all $i \in \mathbb{N}$.

Proof. Suppose not, and let m be the smallest natural number such that p_m is false. Then p_i is true for all i < m. By **(IS)**, p_m is true, contradicting the assumption. Thus p_i is true for all $i \in \mathbb{N}$.

It is common in the statement of the strong induction principle to include the base case (I1), that p_1 is true, as a premise. In practice, we may have to verify (I1) as a step in demonstrating (IS). We note that (I1) is implied by (IS), but that (I2) is not implied by (IS) (why?).

Department of Mathematics and CSCI, BASIS Scottsdale $\mathit{Email}\ address: \texttt{paul.bailey@basised.com}$

 $\mathbf{2}$